Thursday, 19 March 2009

INVERSE POLYGONAL NUMBERS SERIES-Notes




The final result, in the preceeding post, can not be derived from a telescoping series [3], if $latex \displaystyle k$ is not integer (See comments at reference [1]).

$latex \displaystyle \sum_{n=1}^\infty \frac{1}{n(n+k)}=\frac{H_k}{k} $

This lack of generality, can be avoided, if we consider a more general definition for the Harmonic Numbers [4], extended to the complex plane, using the function:

$latex \displaystyle H_z=\gamma+\psi_0(z+1) $


Where $latex \displaystyle \psi_0 \;$ is the so called digamma function, and $latex \displaystyle \;\gamma\;$ is the Euler-Mascheroni constant.

If you take a look at the expresion (15), in the reference [2] : We can find that one asymptotic expansion for the digamma function is:

$latex \displaystyle \psi_0(k+1)=-\gamma+\sum_{n=1}^\infty{\frac{k}{n(n+k)} $

This is why the Polygonal Numbers Series sum is working:

$latex \displaystyle H_k=\gamma-\gamma+ \sum_{n=1}^\infty{\frac{k}{n(n+k)} $

$latex \displaystyle \frac{H_k}{k}=\sum_{n=1}^\infty{\frac{1}{n(n+k)}=\frac{\gamma+\psi_0(k+1)}{k} $

And the polygonal numbers infinite sum, can be expressed (if $latex \displaystyle \;s\neq4\;$) as:

$latex \displaystyle S_{\infty}(s)=\frac{2}{4-s}*(\gamma+\psi_{0}\left(\frac{2}{s-2}\right)) $

This expresion works for all $latex \displaystyle s>2$, as well as for all nonreal $latex \displaystyle s$, It also works for all $latex \displaystyle s<2$, except if $latex \displaystyle s<2$, and $latex \displaystyle s$ is $latex \displaystyle \;\;0, 1, 4/3, 6/4, 8/5, 10/6, ... \;$, because $latex \displaystyle \;\psi_0\;$ is not defined for negative integers (See reference) [1]


References:


[1]-Charles R Greathouse IV - Comments @ My Math Forum Inverse Polygonal Series
[2]-Weisstein, Eric W. "Digamma Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DigammaFunction.html
[3]-Telescoping Series @ Wikipedia Telescoping Series
[4]-Sondow, Jonathan and Weisstein, Eric W. "Harmonic Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HarmonicNumber.html
[5]-Photo Martin Gardner, Mathematical Games, Scientific American, 211(5):126-133, taken from http://bit-player.org/2007/hung-over